Philadelphia University		Approval date:
Faculty	PHILADELPHIA	Issue:
Department	UNIVERSITY THE WAY TO THE FUTURE	Credit hours: 3
Academic year	Course Syllabus	Bachelor

Course information

Course#		Course title		P	rerequisite
0212109	General Chemistry for Health Science				
	Co	urse type	Class ti	me	Room #
□ University R ⊠ Major Requ Compulsory	-	□ Faculty Requirement □ Elective □	Sun. Tue 8:15-9:4 12:45-2: Mon. We 8:15-9:4 11:15-12	5 15 ed 5	

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Khadeejah Al Abrouni	812	/ 1 /	9:30-11 am Sun., Tue 9:30-11 am Mon., Wed,	kabrouni@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
🛛 Physical	□ Online □ Blended		
Learning Model			
Precentage	Synchronous	Asynchronous	B Physical
_			%100

Course Description

This course targets to teach students the basic principles of general chemistry. The first part of the course will cover the fundamental aspects of matter and measurements, stoichiometry, and reactions in aqueous solution. The second part will cover electronic structure of atoms and the periodic table properties, chemical bonding and molecular geometry. The final part will cover the properties of gases and energy relationships in chemical reaction. Also, this course will be illustrating the concept of chemical kinetics, equilibrium and the thermodynamics of chemical reaction

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes				
	Knowledge					
K1	Perform unit analysis problems (involving the metric system, unit convers volume, density and temperature) applying significant digits and scientific nota	K _P 3				
K2	Know and correctly use the language of chemistry (nomenclature, terminology symbolic representations).					
K3	Understand the molar mass and how to the find the chemical formula. stoichiometry to find the reaction yield.	S _P 2				
K4	Understand the basics of atomic structure as it applies to assigning quantum numbers to electrons in atomic orbitals as well as writing electron configurations					
К5	Identify conjugate acid-base pairs for Bronsted acids and bases, explore the acid-base properties of water using the ion-product constant, Kw	S _P 2				
K6	Write ionization constant expressions for weak acids. Calculate pH of weak acids and bases. Find the percent ionization	K _P 3				
K7	Represent reactions with rate expressions. Classify the order of a reaction. Calcurate law of a reaction and Calculate activation energy.	S _P 2				
K8	Distinguish between one directional and equilibrium reactions. Write equilibrium constant expression for a reaction. and Identify the factors that a equilibrium.					
К9	Identify state functions. Demonstrate the First Law of Thermodynamics. Calc work done. Correlate the Second Law of Thermodynamics with the chang entropy of the universe. Calculate the change in entropy of system & surround	S⊧2				
K10	Utilize thermochemical equations to calculate the change in enthalpy and calc Gibbs free energy and standard free- energy changes for reactions	S _P 2				
K11	Predict the behavior of gases while undergoing changes in volume, pres temperature and quantity.					
	Skills					
S1	Gather and critically evaluate data using the scientific method	S _P 2				
S2	Analyze, evaluate, and synthesize information	S _P 2				
S3	Use critical thinking and logic in solving problems	C _P 1				
S4	Solve quantitative problems using basic mathematical skills	3K _₽ ,S _P 2				
	Competencies					
C1	Develop, interpret, and express ideas through written communication	C _P 1				
C2	Improve general performance for student through the interaction with each oth solving different chemical problems (social media)	C _P 2				

Learning Resources

Course textbook	 Title: General Chemistry, The Essential Concept, 6th edition Author: Raymond Chang. Publisher: McGraw Hill 2011 ISBN: 978-007-131368-1
Supporting References	
Supporting websites	https://learn.saylor.org/course/chem101 http://antoine.frostburg.edu/chem/senese/101/slides.shtml https://www.khanacademy.org/science/chemistry
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other

Meetings and subjects' timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1,2	 Introduction (Chapter 1, Chapter 2) 1.4 Measurement (SI units, Mass and weight, volume, density and temperature scales) 1.5 Handling Numbers (Scientific notations, significant figures and notes on problem solving) 2.3 Atomic Number, Mass Number and Isotopes 2.4 The Periodic Table 2.6 Chemical Formulas (Molecular formula, empirical formula, formula of ionic compounds) 	Lecture		Course Syllabus & Chapter 1
3,4	 Stoichiometry (Chapter 3) 3.1 Atomic Mass: Average Atomic Mass 3.2 Avogadro's Number and the Molar Mass of an Element 3.3 Molecular Mass 3.5 Percent Composition of Compounds 3.6 Experimental Determination of Empirical Formulas 3.7 Chemical Reactions and Chemical Equations 3.8 Amounts of Reactants and Products 3.9 Limiting Reagents 3.10 Reaction Yield 	Lecture	Quiz chapter 1 &2	Chapter 3
4,5	 Reactions in aqueous solutions (Chapter 4) 4.1 General Properties of Aqueous Solutions: Electrolytes versus Non-electrolytes 4.2 Precipitation Reactions (Solubility, molecular equations, ionic equations and net ionic equations) 4.3 Acid-Base Reactions (General Properties of Acids and Bases, Bronsted Acids and Bases, Acid-Base Neutralization, Acid-Base Reactions Leading to Gas Formation) 4.4 Oxidation-Reduction Reactions and Oxidation Number 4.5 Concentration of Solutions and Dilution of Solutions 4.6 Solution Stoichiometry 	Lecture	Quiz chapter 3	Chapter 4
6	Gases (Chapter 5) 5.1 Substances That Exist as Gases (SI units of pressure and Atmospheric pressure) 5.2 Pressure of a Gas 5.4 The Ideal Gas Equation (Density and Molar Mass of a Gaseous Substance) 5.5 Dalton's Law of Partial Pressures	Lecture	Mid term Exam	Chapter 5
7	Acids and Bases (Chapter 16)	Lecture		Chapter 16

r	161 Drés de l'Asile en l Desse Conisset			
	16.1 Bronsted Acids and Bases ,Conjugate Acid-Base Pairs			
	16.2 The Acid-Base Properties of Water ,The Ion-Product of Water			
	16.3 pH—A Measure of Acidity			
	1			
	16.4 Strength of Acids and Bases 16.5 Weak Acids and Acid Ionization			
	Constants			
	16.6 Weak Bases and Base Ionization			
	Constants			
	16.7 The Relationship Between Conjugate Acid-Base Ionization Constants			
	16.8 Molecular Structure and the Strength of			
	Acids (Hydrohalic Acids and Oxoacids)			
	16.9 Acid-Base Properties of Salts			
	The electronic structure of atoms			
	(Chapter 7 and Chapter 8)			
	7.6 Quantum Numbers (The Principal			
	Quantum Number (n), The Angular			
	Momentum Quantum Number, The			
	Magnetic Quantum Number, The			
	Electron Spin Quantum Number) 7.7 Atomic Orbitals			
	7.8 Electron Configuration (The Pauli			
8	Exclusion Principle, Diamagnetism and	Lecture	Quiz chapter	Chapter 7 &
ð	Para magnetism, The Shielding Effect in	Lecture	5 & 16	chapter 8
	Many-Electron Atoms, Hund's Rule,			-
	General Rules for Assigning Electrons to			
	Atomic Orbitals and Electron			
	Configurations of Cations and anions)			
	7.9 The Building-Up Principle			
	8.3 Periodic Variation in Physical Properties			
	(Effective Nuclear Charge, Atomic Radius, Ionic Radius)			
	8.4 Ionization Energy			
	8.5 Electron Affinity			
	Chemical bonding I: the covalent bond			
	(Chapter 9)			
	9.1 Lewis Dot Symbols			
	9.2 The Ionic Bond			
	9.4 The Covalent Bond			
9	9.5 Electronegativity			Chapter 9
	9.6 Writing Lewis Structures			
	9.7 Formal Charge and Lewis Structure			
	9.8 The Concept of Resonance			
	9.9 Exceptions to the Octet Rule			
	Molecular geometry hybridization of			
	atomic orbitals and Intermolecular forces			
	and liquids (Chapter 10 & 12)			
	10.1 Molecular Geometry, Guidelines for			
	Applying the VSEPR Model			
	10.2 Dipole Moments	_		~
10	10.2 Valence Bond Theory	Lecture		Chapter 10
	10.4 Hybridization of Atomic Orbitals			
	10.5 Hybridization in Molecules Containing			
	Double and Triple Bonds			
	12.1 The Kinetic Molecular Theory of			
	Liquids and Solids			
A				

12 Chu 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 17 18 13	 2.2 Intermolecular Forces 2.3 Properties of Liquids hemical Kinetics (Chapter 14) 4.1 The rate of a reaction 4.2 The rate laws 4.3 Relation between reactant oncentrations and time 4.4 Activation energy and temperature ependence of rate constants 4.5 Reaction Mechanisms 4.6 Catalysis 	Lecture	Quiz chapter 7,8,9,10	Chapter 14
Chan 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 16. 17. 18. 18.	 hemical Kinetics (Chapter 14) 4.1 The rate of a reaction 4.2 The rate laws 4.3 Relation between reactant oncentrations and time 4.4 Activation energy and temperature ependence of rate constants 4.5 Reaction Mechanisms 	Lecture		Chapter 14
Cho 15. 12 con 15 us 15 15 us 15 Eno Rea che 6.3 Firs Hea 13	+.U Calalysis			
Rea 6.3 First Heat 6.4 (En)	hemical Equilibrium (Chapter 15) 5.1 The Concept of equilibrium 5.2 Ways of expressing equilibrium onstants 5.3 What does the equilibrium constant tell	Lecture		Chapter 15
	nergy Relationships in Chemical eactions and Thermodynamics of nemical reactions (Chapter 6 & 18) 3 Introduction to Thermodynamics (The rst Law of Thermodynamics. Work and	Lecture		Chapter 16 & chapter 18

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	5	K1, K2, K3, K5, K11
Various Assessments *	% 30	Continuous	C1, C2, K1, K2, K3, K4, K5, K6
Final Exam	% 40	9	S3, S4, K7, K8, K9, K10, K5, K6
Total	%100		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
	Knowledge	1	1
K1	Perform unit analysis problems (involving the	Lecture	Exam
	metric system, unit conversions, volume, density		
	and temperature) applying significant digits and		
17.0	scientific notation.		
K2	Know and correctly use the language of chemistry	Lecture	Exam
	(nomenclature, terminology, and symbolic representations).		
K3	Understand the molar mass and how to the find the	Lecture	Exam
KJ	chemical formula. Use stoichiometry to find the	Lecture	EXdill
	reaction yield.		
K4	Understand the basics of atomic structure as it	Lecture	Exam
124	applies to assigning quantum numbers to electrons	Lecture	Exam
	in atomic orbitals as well as writing electron		
	configurations		
K5	Identify conjugate acid-base pairs for Bronsted acids	Lecture	Exam
	and bases, explore the acid-base properties of water		
	using the ion-product constant, Kw		
K6	Write ionization constant expressions for weak	Lecture	Exam
	acids. Calculate pH of weak acids and bases. Find		
	the percent ionization		
K7	Represent reactions with rate expressions . Classify	Lecture	Exam
	the order of a reaction. Calculate the rate law of a		
	reaction and Calculate activation energy.		
K8	Distinguish between one directional and equilibrium	Lecture	Exam
	reactions. Write the equilibrium constant expression		
	for a reaction. and Identify the factors that affect		
170	equilibrium.		
K9	Identify state functions. Demonstrate the First Law	Lecture	Exam
	of Thermodynamics. Calculate work done. Correlate the Second Law of Thermodynamics with the		
	change in entropy of the universe. Calculate the		
	change in entropy of use universe. Calculate the change in entropy of system & surroundings.		
K10	Utilize thermochemical equations to calculate the	Lecture	Exam
1110	change in enthalpy and calculate Gibbs free energy	Lecture	LAGIN
	and standard free- energy changes for reactions		
K11	Predict the behavior of gases while undergoing	Lecture	Exam
	changes in volume, pressure, temperature and		-
	quantity.		
	Skills		
S1	Gather and critically evaluate data using the scientific method	Homework	Quiz
S2	Analyze, evaluate, and synthesize information	Discussion	Quiz
<u>S2</u>	Use critical thinking and logic in solving problems	Lecture	Exam
<u> </u>	Solve quantitative problems using basic	Homework	Quiz
	mathematical skills	TOMEWOIK	Quiz
	Competencies	1	l
C1	Develop, interpret, and express ideas through	Homework	Quiz
	written communication	110mle work	Zuiz
C2	Improve general performance for student through	Teams	Discussion
	the interaction with each other in solving different	i camb	1500551011
	chemical problems		
	Tipped Class project-based learning problem solving based	L	1

* includes: Lecture, flipped Class, project- based learning , problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Policy	Policy Requirements			
Passing Grade	The minimum passing grade for the course is (50%) and the minimum			
	final mark recorded on transcript is (35%).			
	• Missing an exam without a valid excuse will result in a zero grade			
	to be assigned to the exam or assessment.			
Missing	• A Student who misses an exam or scheduled assessment, for a			
Exams	legitimate reason, must submit an official written excuse within a			
	week from the an exam or assessment due date.			
	• A student who has an excuse for missing a final exam should submit			
	the excuse to the dean within three days of the missed exam date.			
Attendance	The student is not allowed to be absent more than (15%) of the total hours			
	prescribed for the course, which equates to six lectures days (M, W) and			
	seven lectures (S,T,R). If the student misses more than (15%) of the total			
	hours prescribed for the course without a satisfactory excuse accepted by			
	the dean of the faculty, s/he will be prohibited from taking the final exam			
	and the grade in that course is considered (zero), but if the absence is due			
	to illness or a compulsive excuse accepted by the dean of the college, then			
	withdrawal grade will be recorded.			
Academic	Philadelphia University pays special attention to the issue of academic			
Honesty	integrity, and the penalties stipulated in the university's instructions are			
	applied to those who are proven to have committed an act that violates			
	academic integrity, such as: cheating, plagiarism (academic theft),			
	collusion, and violating intellectual property rights.			

Course Polices

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Кр3	Using mathematical and statistical methods and scientific research .mechanisms to address applied issues	General Chemistry for Health Science	Exam	100% of the students get 60% or more

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment	
Кр3	Find number of moles, molar mass, balance equations, and solve amount of reactant and product. Find the concentration of solution, energy of forming bonds and determine the rate of reaction	